В мультикомпьютерах с распределенной памятью существуют соединительная сеть, но каждый процессор имеет собственную память. Соединительная сеть поддерживает передачу сообщений. Мультикомпьютеры (многопроцессорные системы с распределенной памятью) не обеспечивают общий доступ ко всей имеющейся в системах памяти. Каждый процессор системы может использовать только свою локальную память, в то время как для доступа к данным, располагаемых на других процессорах, необходимо использовать интерфейсы передачи сообщений (например, стандарт MPI). Данный подход используется при построении двух важных типов многопроцессорных вычислительных систем - массивно-параллельных систем (massively parallel processor or MPP) и кластеров (clusters).
Мультикомпьютер (многомашинная система) – мультипроцессор с распределенной памятью, в котором процессоры и сеть расположены физически близко (в одном помещении). Также называют тесно связанной машинной. Она одновременно используется одним или небольшим числом приложений; каждое приложение задействует выделенный набор процессоров. Соединительная сеть с большой пропускной способностью предоставляет высокоскоростной путь связи между процессарами.
Сетевая система – это многомашинная система с распределенной памятью, связаны с помощью локальной сети или глобальной сети Internet (слабо связанные мультикомпьютеры). Здесь процессоры взаимодействуют также с помощью передачи сообщений, но время их доставки больше, чем в многомашинных системах, и в сети больше конфликтов. С другой стороны, сетевая система строится на основе обычных рабочих станций и сетей, тогда как в многомашинной системе часто есть специализированные компоненты, особенно у связующей сети.
Под кластером обычно понимается множество отдельных компьютеров, объединенных в сеть, для которых при помощи специальных аппаратно-программных средств обеспечивается возможность унифицированного управления, надежного функционирования и эффективного использования. Кластеры могут быть образованы на базе уже существующих у потребителей отдельных компьютеров, либо же сконструированы из типовых компьютерных элементов, что обычно не требует значительных финансовых затрат. Применение кластеров может также в некоторой степени снизить проблемы, связанные с разработкой параллельных алгоритмов и программ, поскольку повышение вычислительной мощности отдельных процессоров позволяет строить кластеры из сравнительно небольшого количества (несколько десятков) отдельных компьютеров (lowly parallel processing). Это приводит к тому, что для параллельного выполнения в алгоритмах решения вычислительных задач достаточно выделять только крупные независимые части расчетов (coarse granularity), что, в свою очередь, снижает сложность построения параллельных методов вычислений и уменьшает потоки передаваемых данных между компьютерами кластера. Вместе с этим следует отметить, что организация взаимодействия вычислительных узлов кластера при помощи передачи сообщений обычно приводит к значительным временным задержкам, что накладывает дополнительные ограничения на тип разрабатываемых параллельных алгоритмов и программ.
Мультикомпьютер (многомашинная система) – мультипроцессор с распределенной памятью, в котором процессоры и сеть расположены физически близко (в одном помещении). Также называют тесно связанной машинной. Она одновременно используется одним или небольшим числом приложений; каждое приложение задействует выделенный набор процессоров. Соединительная сеть с большой пропускной способностью предоставляет высокоскоростной путь связи между процессарами.
Сетевая система – это многомашинная система с распределенной памятью, связаны с помощью локальной сети или глобальной сети Internet (слабо связанные мультикомпьютеры). Здесь процессоры взаимодействуют также с помощью передачи сообщений, но время их доставки больше, чем в многомашинных системах, и в сети больше конфликтов. С другой стороны, сетевая система строится на основе обычных рабочих станций и сетей, тогда как в многомашинной системе часто есть специализированные компоненты, особенно у связующей сети.
Под кластером обычно понимается множество отдельных компьютеров, объединенных в сеть, для которых при помощи специальных аппаратно-программных средств обеспечивается возможность унифицированного управления, надежного функционирования и эффективного использования. Кластеры могут быть образованы на базе уже существующих у потребителей отдельных компьютеров, либо же сконструированы из типовых компьютерных элементов, что обычно не требует значительных финансовых затрат. Применение кластеров может также в некоторой степени снизить проблемы, связанные с разработкой параллельных алгоритмов и программ, поскольку повышение вычислительной мощности отдельных процессоров позволяет строить кластеры из сравнительно небольшого количества (несколько десятков) отдельных компьютеров (lowly parallel processing). Это приводит к тому, что для параллельного выполнения в алгоритмах решения вычислительных задач достаточно выделять только крупные независимые части расчетов (coarse granularity), что, в свою очередь, снижает сложность построения параллельных методов вычислений и уменьшает потоки передаваемых данных между компьютерами кластера. Вместе с этим следует отметить, что организация взаимодействия вычислительных узлов кластера при помощи передачи сообщений обычно приводит к значительным временным задержкам, что накладывает дополнительные ограничения на тип разрабатываемых параллельных алгоритмов и программ.